twinlab.sampling.LatinHypercube#

class twinlab.sampling.LatinHypercube(scramble=True, optimization='random-cd')[source]#

A sampling strategy that uses Latin Hypercube Sampling.

Parameters:
  • scramble (bool, optional) – Whether to scramble the samples within sub-cubes. The default value is True.

  • optimization (str | None, optional) –

    The optimization method to use for generating the samples. Options are:

    • None: No optimization is performed once the intial samples are generated.

    • "random-cd": Randomly permute the columns of the matrix in order to lower the centred discrepancy of the generated samples.

    • "lloyd": Perturb the samples using a modified Lloyd-Max algorithm. The process converges to equally spaced samples.

    The default is "random-cd".

__init__(scramble=True, optimization='random-cd')[source]#

Methods

__init__([scramble, optimization])

to_json()