Parameters#

The following classes of the twinlab Parameter function define parameters that can be use to further refine functionality for the respective twinLab function.

Parameter classes#

DesignParams([sampling_method, seed])

Parameter configuration to setup an initial experimental or simulations design structure.

EstimatorParams([detrend, covar_module, ...])

Parameter configuration for the emulator.

ModelSelectionParams([seed, ...])

Parameter configuration for the Bayesian model selection process.

TrainParams([estimator, estimator_params, ...])

Parameter configuration for training an emulator.

ScoreParams([metric, combined_score])

Parameter configuration for scoring a trained emulator.

BenchmarkParams([type])

Parameter configuration for benchmarking a trained emulator.

PredictParams([observation_noise, fidelity])

Parameter configuration for making predictions using a trained emulator.

SampleParams([seed, observation_noise, fidelity])

Parameter configuration for sampling from a trained emulator.

RecommendParams([weights, num_restarts, ...])

Parameter configuration for recommending new points to sample using the Bayesian-optimisation routine.

CalibrateParams([y_std_model, ...])

Parameter configuration for inverting a trained emulator to estimate the input parameters that generated a given output.

MaximizeParams([opt_weights])

Parameter configuration for finding the location of the maximum output of your emulator.